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Comments on Notation and Formulae 
Several versions of this class have used notation and formula based on different styles.  Much of the 
material is taken from the IRS’s training course, which also had yet again a different style of notation.  
There are numerous styles to choose from, and we have chosen to adopt the style found in the book 
Sampling Techniques, by William Cochran (third edition, John Wiley and Sons, 1977).  We have 
endeavored to stay close to (but not necessarily in complete accordance with) the notation 
conventions used in his book.  Some of the formulas are lifted directly from the book, and a reference 
note is given where it is known that the formula can be found directly, or with some derivation. 

Another source used for guidance is Statistical Auditing (AICPA, 1978) by Donald Roberts.  The 
AICPA has suggested Statistical Auditing as a technical source applying statistical sampling methods 
in financial audits.1   This book is meant for financial auditors, and Don Roberts has advised us to be 
careful when applying the formulas to sales and use tax applications.  Dr. Al Kvanli has derived 
many of these formulas in the original adaptation of this class.  However, the formula style has been 
converted to be in line with that found in Cochran’s Sampling Techniques. 

A number of other popular survey sampling books also have a wide variety of styles.  But they all 
seem to reflect the same formulas that at first glance look quite different.  But, after accounting for 
style differences, they seem to all provide for the same results. 

Sales and use tax auditors are interested valuing taxable error (sometimes tax error).  The auditor’s 
adjustment in the final audit report will be based on the total taxable error found in the audit.  In a 
“detail” audit, the auditor reviews every transaction and notes any taxable error made by the taxpayer.  
In anything but a detail audit, taxable error is estimated.  It can be said that the population 
characteristic of interest is most often total taxable error.  Most audits are not detailed, especially in 
large audits.  Therefore, the total taxable error is often not known with certainty.  Some sort of 
sample is then used to estimate total taxable error.  In somewhat rare instances, total tax value will be 
of estimated directly rather than estimating taxable error. 

In Statistical Auditing, total error or differences are denoted with the very logical variable D, which 
represents an amount that must be applied to the book value to arrive at the corrected audited value.  
In Sampling Techniques, the population characteristic of interest is represented with Y.  Because we 
want to stay as close to Cochran as possible, we have opted to use Y to denote total taxable error, the 
population characteristic of interest, and stayed away from D (to avoid confusion with the difference 
estimator).   

In reviewing the taxpayer’s records, the auditor must review the recorded amounts for business 
transaction which are typically documented by invoices.  Ultimately, it is often (but not always) the 
invoice and related documents that the auditor reviews to make judgments concerning taxable error.  
Therefore the invoice value is the “auxiliary” variable that is usually collected during the sampling 
process.  The invoice or transaction total of all invoices is usually a known value, often relatively 
easily attainable in the audit examination, and frequently correlated (to differing degrees) with the 
taxable error.   The total of all invoices (or transactions) is denoted as Y in Statistical Auditing, and X 
in Sampling Techniques.  In this case, we again opt for the convention used by Cochran.  The 
individual examined invoice values xi where i = 1,2,3…N for population values, or x1, x2, x3 …xN , 
could be totals on each invoice, invoice line item amounts, line items from accounting entries that 

                                                 
1 Refer to the AICPA’s Audit Practice Release, Audit Sampling (1999).  References to Statistical Auditing can be found at 
pages xii, 27, 39, 61, 101 and 111.  . 
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represent book values, line items that document reported amounts on tax returns, or other units 
recorded in the books and records of the taxpayer.  Cochran refers to these values, xi, as an “auxiliary 
variate” (page 150).  Note that in other audit sampling applications, the auxiliary variate could be 
referred to as a book value, examined amount, recorded amount, or reported amount. 

One of the estimators described herein uses a variable other than x or y, requiring a definition of yet a 
third variable, something called an audited value.  For financial auditors, the audited value, plus the 
error value (differences), will very neatly equal the total book value.   This is not easily transferred to 
sales and use tax auditing.  The financial audit concept of “audited value” refers to the corrected book 
value.  But the “correct” value upon which sales tax should have been charged is almost never going 
to be the same as the difference between the x and y values found in sales and use tax auditing.  The 
transaction value, if no taxable error exists in the population, will contain correctly taxable and 
correctly nontaxable elements.  Therefore the concept of audited value breaks down or is not easily 
applied in the arena of sales and use tax auditing.  Within this appendix, audited value will be 
designated as x – y. 

The concept of audited value is generally modified in sales and use tax auditing as being some 
theoretical number without any meaning of “correctness”.  It simply represents the difference 
between the invoice value, and the taxable error value (some refer to it as a plug value).   An audited 
value will simply be represented herein as xi - yi.  In estimating total taxable versus total taxable error, 
the meaning audited value will be different. 

  
 
General Symbols: 

Estimate ^ Caret over expression 

Mean  ¯ Bar over expression 

Item i  Subscript i (ith item in a series or group) 

Sum ∑=

N

i ix
1

 
Greek upper case letter sigma (sum all items 

making up xi beginning with i = 1 through i = 
N) 

Population Count N   

Sample Count n   

 X, Y 
Upper case letters – Characteristics of a 

Population 
 (Cochran page 20) 

 x, y 
Lower case letters – Characteristics of a 

sample, or individual elements of the 
population 

(Cochran page 20)
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Invoice Value: 
Invoice Value 

(recorded value, examined value, 
or book value) 

ix  
The ith invoice item transaction amount in a 

sample or population, where  is the 
invoice value from the eighth sampling unit. 

8x

Invoice Value Total 
(Population) X 

Invoice total from a population of N units: 

or ∑
=

N

i
ix

1
Nxxxx ++++ K321  

Mean Invoice Value 
(Population) X  

N

x
N

i
i∑

=1 or 
N

xxxx N++++ K321  

Mean Invoice Value 
(Sample) x  

n

x
n

i
i∑

=1 or 
n

xxxx n++++ K321  

Estimated Total Invoice Value 
(Population) X̂  

From an estimator (see mean, difference, 
ratio, or regression estimators) 

 
 
Taxable (Tax) Error: 

Taxable Error Value iy  
The ith taxable error value in a sample or 
population, where  is the taxable error 

value from the eighth sampling unit. 
8y

Taxable Error Total 
(Population) Y  

Total taxable error from a population of N 
units: 

∑
=

N

i
iy

1

or Nyyyy ++++ K321  

(Cochran page 20) 

Mean Taxable Error 
(Population) Y  

N

y
N

i
i∑

=1  or 
N

yyyy N++++ K321  
(Cochran page 20)

Mean Taxable Error 
(Sample) y  

n

y
n

i
i∑

=1 or 
n

yyyy n++++ K321  
(Cochran page 20)

Estimated Total Taxable Error  
(Population) Ŷ  

From an estimator (see mean, difference, 
ratio, or regression estimators) 
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Audited Value: 

Audited Value ii yx −  The ith audited value in a sample or 
population 

Total Audited Value  
(Population) YX −   

Mean Audited Value 
(Population) YX −   

Mean Audited Value 
(Sample) 

yx −   

 
 
 
Sample Variance and Standard Deviation: 

1
)(

1
2

−

−∑ =

n
xxn

i i  or 
)1(

)( 2
11

2

−

− ∑∑ ==

nn
xxn n

i i
n

i i   
Variance  

(Invoice Values) 
2
xs  

Excel formula: “=var(range of values)” 

1
)(

1
2

−

−∑ =

n
yyn

i i  or 
)1(

)( 2
11

2

−

− ∑∑ ==

nn

yyn
i

n

i

n

i i   Variance  
(Taxable Error) 

2
ys  

Excel formula: “=var(range of values)”  
2
xs  Standard Deviation  

(Invoice Values) xs  
Excel formula: “=stddev(range of values)” 

2
ys  Standard Deviation  

(Taxable Error) ys  
Excel formula: “=stddev(range of values)”  

Inflation Factor  nN        
(Cochran page 21)

Sampling Fraction f  Nn  
(Cochran page 21) 

Finite Population Correction fpc  

f−1    
(Cochran page 24) 

Note: per Sampling Techniques, at page 25, 
the fpc can be ignored (equated to the value 
of 1) “whenever the sampling fraction does 

not exceed 5%” 
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Confidence Coefficient, Precision & Confidence Interval: 
z-score 

(normal deviate) z  Excel formula: “=NORMSINV(1-sided 
probability)” 

Student’s t 
(normal deviate) t  

Excel formula: “=TINV(area in the tails 
where the probability is 2-sided, degrees of 

freedom)” 
(Cochran page 27) 

1−n  
 

For simple random sampling 
(Cochran page 27) 

 

Degrees of Freedom 
en  

For stratified sampling designs, the term 
1−n  is not appropriate; see effective degrees 

of freedom in stratified sections. 
(Cochran page 96) 

Precision Amount 
 (Total Taxable Error)  Yts ˆ  

(Cochran 2.23 & 2.24) 

Confidence Interval 
(Estimated Total Taxable Error)  ( )YtsY ˆ

ˆ ±  

 
 
Mean-per-Unit Estimator - Simple Random Sampling: 

Mean-per-unit Estimator m Subscript m

Estimated Total Taxable Error 
Value 

(Mean-per-unit) 
mŶ  ( )[ ]yxNX −−  

Standard Error  
Total Taxable Error 

(Mean-per-unit) 
mYs ,ˆ  ( ) ( )[ ]

fpc
n

yxyx

n
N

n

i ii

1
1 1

2

−

−−−∑ =   

Precision Amount 
Total Taxable Error 

(Mean-per-unit) 
 mYts ,ˆ   

Confidence Interval 
Estimated Total Error Value 

(Mean-per-unit) 
 ( )mYm tsY ,ˆ

ˆ ±  
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Difference Estimator - Simple Random Sampling: 
Difference Estimator d Subscript d

Estimated Total Taxable Error 
Value 

(Difference estimator) 
dŶ  yN  

(Cochran page 22) 

Standard Error  
Total Taxable Error Value 

(Difference estimator) 
dYs ,ˆ  

n

fpcNsy  or 
n

nNNsy )(2 −
 

Precision Amount 
Total Taxable Error Value 

(Difference estimator) 
 dYts ,ˆ   

Confidence Interval  
Estimated Total Error Value 

(Difference estimator) 
 ( )dYd tsY ,ˆ

ˆ ±  
(Cochran 2.23 & 2.24)

 
 
Coefficients of Variation - Simple Random Sampling: 

Standard Deviation  
(Invoice Values) xs  

1
)(

1
2

−

−∑ =

n
xxn

i i  

Coefficient of Variation 
of the Estimated Total Invoice 

Value 
(same as the CV of the sample 
mean invoice value, ( )xCV ) 

( )XCV ˆ  
yNX

fpcs
n

N
x

−
or 

X

sX

ˆ
ˆ  

 

 
The estimated standard error formulas found below are “large sample approximations” for ratio and 
regression estimation.  Cochran, at page 153, recommends that the ( )XCV ˆ  be below 10% as a 
working rule to insure that the samples are sufficiently large so that the formulas can be presumed 
valid.  This test has been integrated into the Multistate Tax Commission Sampling Software. 
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Ratio Estimator - Simple Random Sampling: 
Ratio Estimator r Subscript r

Ratio of the Taxable Error 
(Unknown) R  X

Y  

Estimate of the Ratio of the 
Taxable Error 

(Ratio est.) 
R̂  ∑

∑
=

=
n

i i

n

i i

x
y

1

1  (from the sample) 

(Cochran page 21)

Estimated Total Taxable Error 
Value 

(Ratio est.) 
rŶ  XR̂  

(Cochran 6.1)

Standard Deviation  
Taxable Error Values 

(Ratio est.) 
rys ,  

( )[ ]
1

ˆ
1

2

−

−∑ =

n
xRyn

i ii  

(Statistical Auditing/Roberts @ page 238)

Standard Error  
Total Taxable Error Value 

(Ratio est.) 
rYs ,ˆ  

n

fpcNs ry ,  or 
n

nNNs ry )(2
, −

 

Precision Amount  
Total Taxable Error Value 

(Ratio est.) 
 rYts ,ˆ  

Confidence Interval 
Estimated Total Error Value 

 (Ratio est.) 
 ( )rYr tsY ,ˆ

ˆ ±  
(Cochran 6.14)
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Regression Estimator - Simple Random Sampling: 
Regression Estimator g Subscript g

( )( ) ( )
( ) 22

1

xnx
xynxy

i

n

i ii

−

−

∑
∑ = or 

( )( )[ ]
( )∑

∑
−

−−
2xx

yyxx

i

ii  

(Cochran 7.19)Regression Coefficient  
of the  

Taxable Error Values 
b  

Excel formula: “=Slope(range of yi values, 
range containing xi values)” 

( )( )( )
( )[ ] ( )[ ]∑∑

∑
==

=

−−

−−
n

i i
n

i i

n

i ii

xxyy

yyxx

1
2

1
2

1  
Correlation Coefficient 

(from the sample) ρ̂  
Excel formula: “=Correl(range of yi values, 

range containing xi values)” 
Estimated Total Taxable Error 

Value 
(Regression est.) 

gŶ  ( ) ( )( )( )xNXbyN −+  

( ) ( )( )
2

1
2

−

−−−∑ =

n
xxbyyn

i ii  Standard Deviation  
Taxable Error Values 

(Regression est.) 
gys ,  

Excel formula: “=steYX(range of yi values, 
range containing xi values)” 

Standard Error  
Total Taxable Error Value 

(Regression est.) 
gYs ,ˆ  

n

fpcNs gy ,  or 
n

nNNs gy )(2
, −

 

Precision Amount  
Total Taxable Error Value 

(Regression est.) 
 gYts ,ˆ  

Confidence Interval 
Total Taxable Error Value 

 (Regression est.) 
 ( )gYg tsY ,ˆ

ˆ ±  
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Stratified Notation: 
Stratification is used in sales/use tax audits almost always to improve precision (reduce the variance) 
and is recommended in almost every case, unless special circumstances occur (for example, the 
population is too small to justify stratification, or it is known that the errors are fairly uniform across 
the entire population, or the errors are known not to correlate in any way with any known 
distribution).  Per Cochran (at page 99), “[i]f intelligently used, stratification nearly always results in 
a smaller variance for the estimated mean or total than is given by a comparable simple random 
sample.  It is not true, however, that any stratified random sample gives a smaller variance than a 
simple random sample.” 
 
The best way to construct the strata (produce the strata boundaries) is based on the distribution of the 
yi amounts, or in the case of tax auditing, the taxable errors, (Cochran at page 127).  That requires 
extensive knowledge of the taxable errors before sampling commences, which of course almost never 
is the case (otherwise no audit or sample would be required).  If stratification based on the yi amounts 
is not possible, one should use something correlated with them.  In sales and use tax auditing, there is 
usually some correlation between the yi and the xi amounts and so these are used (Cochran suggests 
that these two distributions be highly correlated – unfortunately nothing else exists for the sales tax 
auditor.  So the next best thing available, the invoice amounts, is used to create the strata boundaries).    
 
As to the number of strata sampled, L, the auditor has wide discretion.  In practice, we see a few 
strata to as many as L = 50.  If stratification is done solely to improve precision (reduce the variance), 
as is almost always the case in sales/use tax audits, it will almost always be fruitless to have L>6.  
Cochran states in various places (pages 133-134), that unless correlation between the distribution 
used to stratify, and the distribution of interest exceeds 95%, then little reduction in the variance is 
realized beyond L = 6 (the correlation between xi and yi is most always in sales/use tax auditing 
below 50%, and is often from 10% to 30%).  Oftentimes for sales and use tax populations, most of 
the improvement in precision is realized by having L = 3 or L = 4.  
 
The cost of stratification can be a factor in determining L in sampling.  However, in practice, since 
the construction of the strata is done through electronic computer means, the relative cost difference 
between just a few strata (such as 3-4) and very many (such as 7-10) is often not material.  Therefore, 
in sales/use tax environments, the cost aspect in deciding L can often be overlooked without much 
consequence.  While having L > 6 might not reduce the overall variance, it usually does not increase 
it either, and therefore it is certainly acceptable to have L > 6 when cost of creating these additional 
strata is not of much consequence.  In some rare instances going to L > 6 will increase variance.  
Sometimes jurisdictions have some minimum number of nonzero errors per stratum.  If such a 
requirement exists, having L > 6 probably is not recommended.  Another possible consequence is that 
as one increases L, more computations need to be made (but it is presumed that the automated 
computer programs will not be prone to error). 
 

Number of Strata 
Sampled L  

Count of the number strata sampled, ignoring 
any stratum detailed 100% or otherwise not 

sampled. 
(Cochran page 89)

Stratum h

Subscript h, the hth stratum out of L strata.  The 
range for h will be  Lh ≤≤1

(Cochran page 90)
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Item i

Subscript i, the ith item, where  is the iihx ,
th 

invoice value in the hth stratum. 
(Cochran page 90)

Stratum Count hN  The number of units in the hth stratum. 
(Cochran page 90)

Population Count N  LNNN +++ ...21  or  ∑ =

L

h hN
1
(Cochran page 89)

Sample Count 
(by Stratum) hn  Sample size in the hth stratum 

(Cochran page 90)

Sample Count 
(All Strata) n  Lnnn +++ ...21  or  ∑ =

L

h hn
1

(Cochran page 89)

Invoice Value ihx ,  
45,3x  is the invoice value from the 45th 

sampling unit in the 3rd stratum (or sample 
from the third stratum). 

Total Invoice Value in the hth 
Stratum 

(by Stratum) 
hX  hNhhh xxx ,2,1, ...+++ or ∑  

=

hN

i ihx
1 ,

Total Invoice Value in the hth stratum 
Total Invoice Value 

(All Strata) X LXXX +++ ...21  or ∑  
=

L

h hX
1

Estimated Total Invoice Value 
in the hth Stratum hX̂  From an estimator 

Estimated Total Invoice Value 
(All Strata) stX̂  

Estimated Total Invoice value from an 
estimator 

(Overall, or across all sampled strata) 
Mean Invoice Value  

from the Sample 
(by Stratum) 

hx  
h

n

i ih

n
xh∑ =1 ,  

Variance  
(Invoice Values in the hth 

Stratum) 

2
hxs  

1
)(

1
2

,

−

−∑ =

h

n

i ih

n
xxh

h  or 
)1(

)( 2
,11

2
,

−

− ∑∑ ==

hh

ih

n

i

n

i ihh

nn

xxn hh

 

Standard Deviation 
(Invoice Values in the hth 

Stratum) 
hxs  2

hxs  

Sampling Fraction 
in the hth Stratum hf  hh Nn  

(Cochran page 90) 

Finite Population Correction 
in the hth Stratum hfpc  hf−1    

(Cochran page 24) 

Standard Error of the hth 
Stratum 

(Population Invoice Value Total) 
hXs ˆ  

h

hxh

n

fpcsN
h  or 

h

hhhx

n
nNNs

h
)(2 −

 

Appendix A.11  



 

Overall Standard Error of the 
Estimated Total Invoice Value  stXs ˆ  ∑ =

L

h X h
s

1
2
ˆ  

Effective Degrees of Freedom 
(stratified sampling) en  ( )( )∑ =

−
L

h hX

X

ns

s

h

st

1
4
ˆ

4
ˆ

1/
 

(Cochran 5.16)

Confidence Interval 
(Estimated Total Invoice Value)  ( )

ste Xnst stX ˆ
ˆ ∗±  

Taxable Error Value ihy ,  
45,3y  is the taxable error value from the 45th 

sampling unit in the 3rd stratum (or sample 
from the third stratum). (Cochran page 90)

Total Taxable Error Value in 
the hth Stratum 

(by Stratum) 
hY  hNhhh yyy ,2,1, ...+++ or  ∑=

hN

i ihy
1 ,

Total Taxable Error Value in the hth stratum 
Total Taxable Error Value 

(All Strata) Y LYYY +++ ...21  or  ∑ =

L

h hY
1

Estimated Total Taxable Error 
Value in the hth Stratum 

(by Stratum) 
hŶ  

Estimated Total Taxable Error Value in the hth 
stratum 

(from an estimator) 
Estimated Total Taxable Error 

Value 
(All Strata) 

stŶ  Estimated Total Error Value from an estimator 
(Overall, or across all sampled strata) 

Mean Taxable Error Value 
from the Sample in the hth 

Stratum 
(by Stratum) 

hy  
h

n

i ih

n
yh∑ =1 ,  

(Cochran page 90

Variance  
(Taxable Error Values in the hth 

Stratum) 

2
hys  

1
)(

1
2

,

−

−∑ =

h

n

i ih

n
yyh

h or 
)1(

)( 2
,11

2
,

−

− ∑∑ ==

hh

ih

n

i

n

i ihh

nn

yyn hh

 

Standard Deviation 
(Taxable Error Values in the hth 

Stratum) 
hys  2

hys  

Standard Error of the hth 
Stratum 

(Population Total Taxable Error 
Value) 

hYs ˆ  
h

hyh

n

fpcsN
h  or 

h

hhhy

n
nNNs

h
)(2 −

 

Overall Standard Error of the 
Estimated Total Taxable Error 

Value  
stYs ˆ  ∑ =

L

h Yh
s

1
2
ˆ  

Effective Degrees of Freedom 
(Stratified Sampling) en  ( )( )∑ =

−
L

h hY

Y

ns

s

h

st

1
4
ˆ

4
ˆ

1/
 

(Cochran 5.16)

Appendix A.12  



 

Confidence Interval 
(Estimated Total Taxable Error 

Value) 
 ( )

ste Ynst stY ˆ
ˆ ±  

(Cochran 5.15)

Download  All records received in a computer (electronic) 
download of records.  

Excluded Items  
Items excluded before establishing the 

Sampling Frame from which sample items are 
drawn 

Sampling Frame 
(All Sampled Strata) LNLxx ,1,1 K  

Records from which sample(s) will be drawn, 
all with some value , , and .  A 

random number is possible and corresponds for 
each sampling unit.  The value  is generally 

known and included in the download.  The 
other two values,  and , are unknowns, 

requiring an audit. 

hix , hiy , hia ,

hix ,

hiy , hia ,

Floor 
(Invoice Value) 0k  

The minimum value of the invoice values in 
the strata sampled: , where 

LNLxx ,1,1 K ihxk ,0 ≤

Ceiling 
(Invoice Value) Lk  

The maximum value of the invoice values in 
the strata sampled: , where 

LNLxx ,1,1 K ihL xk ,≥

Range 
(All Sampled Strata) Lkk ↔0  

The range of invoice values sampled.  All 
items in the sampling frame can be assigned an 

invoice value from within the range.  
Generally, a download will provide a field that 

has a value assigned as the invoice value. 

Stratum Break Value 
 hk  

Break value determining strata boundaries, 
where .  For example  is the break 

value between stratum 1 and 2, 
where

Lh〉〉0 1k

1,21,1 1
xkx N <≤  where the values of x  

are sorted smallest to largest.  Note that any 
invoice with the value  and  will be in 

stratum 1, any invoice with the value  will 
be in stratum 2… and invoice with the value of 

will be in stratum

0k 1k

2k

Lk L .  Three methods for 
determining these break values are described 
below as CSRF-Equal, CSRF-Unequal, and 

Geometric Ratio. 
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High $  
Items 

(Detail) 

Invoice 
Value >  Lk

Items in the download with an invoice value 
greater than the ceiling value ( ) are not 

included in the sampling frame for sampling 
purposes, but often are detailed (reviewed 
100%).  It is possible to have set as the 
highest invoice value in the download, in 

which case there will be no “High $ Items”. 

Lk

Lk

Low $ Items 
$0 < Invoice 
Value <  0k

Excluded items with invoice values greater 
than $0, but less than the floor ( ).  It is 

possible to set  = $0.01, and therefore there 
will be no low $ items. 

0k

0k

Negatives Invoice 
Value < $0 

A record where the invoice value is less than 
zero, 0<x .  While negatives are considered 
“excluded items” and are excluded from the 
initial sampling process, they should not be 

ignored in the overall sampling process.  Audit 
steps are required to remove matching and 

extraneous positive values prior to sampling.  
Sampling is done from the remaining positive 
values.  After sampling, remaining negative 

values should be considered in the valuation of 
error for all sample items drawn from the 

positive values.  If the error value is affected 
by a negative invoice value, the error value 

should be adjusted considering both the 
positive and negative value, as appropriate.  It 

is important to note that negative invoice 
values, when considered with the matching 

positive invoice value, can yield a zero, 
positive or negative error value for the 

transaction.  Failing to consider matching 
negative invoice values might lead to 

improperly valuing difference values.  Such 
improper difference valuations could be 

negative, zero or positive.  Therefore, it is 
difficult to say whether the sample results are 

overstated, understated, or unaffected by 
failing to consider the negative invoice values. 
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Cumulative Square Root of the Frequency (CSRF) - Equal 
Determination of Break Values: 

Number of Strata 
Sampled L  

Count of the number strata to be 
sampled, ignoring any stratum detailed 

100% or otherwise not sampled. 
(Cochran page 89)

Class Intervals 
(aka “mesh”) ji

When xi is arranged smallest to 
largest, where  is the smallest 

population value and is largest, the 
entire population is divided into 

numerous intervals of some equal size 
or increment value of x

1x

Nx

i.  The first 
interval , contains and the last 

interval  contains  
where . With electronic 
methods, it is suggested that at least 
10*L intervals be created.  In any 

case, a larger number of intervals need 
to be created than the total number of 

strata, L, to be sampled.  Creating 
more than this, (by lessening the 
uniform length d), to create more 

possible intervals, is often preferable. 

1j 1x

lastj Nx

lastjjjj ,...,, 321

Class Interval Length 
(Equal through Frame) l 

Is the length of each of the intervals, 
in terms of incremental values of X.  
Each interval in CSRF-Equal is of 

equal length l.  Often l is some 
uniform value such as 5, 10, 100 or 

some other number.  The boundary of 
each interval is some multiple value of 

l. 

Frequency of xi ( )ixf  Is the count of sampling units within 
each interval based on the value xi. 

Square Root of the 
Frequency of xi

( )ixf   

Cumulative Square Root of 
the Frequency of xi

( )ixfcum  

Beginning with the first interval  
containing , the 

1j

1x ( )ixf  of the 
interval is added to the cumulative 

total ( )ixf of all preceding intervals 
down through the last interval 
containing .  Each jNx i has a 

value ( )ixfcum . 
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Last Cumulative Square 
Root of the Frequency of xi

( )
Lastixfcum  

Is the ( )ixfcum  of  that 
contains  and is the sum of all the 

lastj

Nx

( )ixf  from all intervals. 

Uniform Division Value Q 
( )
1−L
xfcum

Lasti  

Optimal Stratum Break 
Values 

[ ]( ) ( ) ( ) optLoptopt ccc −−−− 121 ,...,,
 

Corresponds to ( ) ( ) [ ]QLQQ )1(,...,2,1 −

Actual Stratum Break 
Values 

( ) ( ) ( )[ ]121 ,...,, −Lkkk  

1k  is the interval value where the 
interval’s ( )ixfcum  value is closest 

to ;  is the interval value 

where the interval’s 
optc −1 2k

( )ixfcum  value 
is closest to ;…;  is the 
interval value where the interval’s 

optc −2 ( )1−Lk

( )ixfcum  value is closest to 
. ( ) optLc −−1

Cochran has an example of this on pages 129-130.  In his example, he uses the values yi to set up the 
intervals.  It is always best to stratify on yi, but this is an unknown distribution in sampling on sales 
and use tax audits.  Therefore, it is common practice to stratify on the invoice values, xi. 

Cumulative Square Root of the Frequency (CSRF)-Unequal 
Determination of Break Values: 

Class Intervals 
(aka “mesh”) ji

Intervals or meshing is done in much 
the same way as CSRF-Equal.  

However, an additional computation is 
needed due to the added nuance of 

varying the length of the intervals, as 
described below.  Again xi is arranged 

smallest to largest, where  is the 
smallest population value and is 

largest, the entire population is 
divided into numerous intervals of 

some equal size or increment value of 
x

1x

Nx

i.  The first interval , contains and 
the last interval  contains  

where . 

1j 1x

lastj Nx

lastjjjj ,...,, 321
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Class Interval Length 
(Varied through Frame) l 

Is the length of each of the intervals, 
in terms of incremental values of X.  
Each interval in CSRF-Unequal is 
increased throughout the frame at 

regular or irregular frequency.  Often l 
starts out with some smaller length, 

and as the xi values increase, the value 
of l is also increased.  No preexisting 
rules exist on how the values of l are 
increased, and are often the result of 
experience with similar populations.   
Auditors will often adjust the rate at 

which the interval is increased through 
the frame to match the population at 

hand, often in some geometric pattern. 

Square Root of  
Class Interval Length l  

Because each interval is not the same, 
this additional calculation is required, 

and is described in Cochran.  This 
value is determined for each interval. 

(Cochran page 130) 

Frequency of xi ( )ixf  
Is the count of sampling units within 
each interval based on the value xi as 

is done in CSRF-Equal. 

Square Root of the 
Frequency of xi

( )ixf  
A square root of the frequency is 
determined for each interval as in 

CSRF-Equal. 

Product of the Squares prod  

( )ixfl  
A product is determined for each 

interval by multiplying the two square 
root values. 

Cumulative Product ( )prodcum  

Beginning with the first interval  
containing , the  of the interval 

is added to the cumulative total 
of all preceding intervals down 

through the last interval containing .  
Each j

1j

1x prod

prod

Nx
i has a value ( )prodcum . 

Last Cumulative Product ( )lastprodcum  
Is the  of  that 

contains  and is the sum of all the 
 from all intervals. 

( )prodcum lastj

Nx
prod

Uniform Division Value Q 
( )

1−L
prodcum last  

Optimal Stratum Break 
Values 

[ ]( ) ( ) ( ) optLoptopt ccc −−−− 121 ,...,,
 

Corresponds to ( ) ( ) [ ]QLQQ )1(,...,2,1 −

Appendix A.17  



 

Actual Stratum Break 
Values 

( ) ( ) ( )[ ]121 ,...,, −Lkkk  

1k  is the interval value where the 
interval’s  value is closest 

to ;  is the interval value 
where the interval’s  value 

is closest to ;…;  is the 
interval value where the interval’s 

(prodcum )

)
optc −1 2k

(prodcum
optc −2 ( )1−Lk

( )prodcum  value is closest to 
. ( ) optLc −−1

 
Geometric Ratio Determination of Break Values: 

Floor 
(Invoice Value) 0k  

The minimum value of the invoice values in 
the population sampled: .  If the 
frame is ordered from smallest value to largest 

value, then  

Nxxxx K321 ,,

10 xk =

Ceiling 
(Invoice Value) Lk  

The maximum of the invoice values in the 
population sampled: .  If the 

frame is ordered from smallest value to largest 
value, then  

Nxxxx K321 ,,

Nxk =0

Number of Strata 
Sampled L  

Count of the number strata to be sampled, 
ignoring any stratum detailed 100% or 

otherwise not sampled. 
(Cochran page 89)

Range Lkk ↔0  The range of invoice values in the population 
sampled.   

Geometric Ratio r ( ) LFloorCeiling 1  
Break Number h Lh <<0  or  ( )1,...,2,1 −L

Stratum Break Value hk  

hrk0  
For example  is the break value between 

stratum 1 and 2, where  where 
the values of 

1k
1,21,1 1

xkx N <≤
x  are sorted smallest to largest.  

Note that any invoice with the value  and  
will be in stratum 1, any invoice with the value 

 will be in stratum 2… and invoice with the 
value of will be in stratum

0k 1k

2k

Lk L .   
Source: Geometric Stratification of Accounting Data by Patricia Gunning, Jane Mary Horgan, and William Yancey, 2004. 
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Stratified Mean-per-Unit Estimator: 
Mean-per-unit Estimator m Subscript m

Estimated Total Taxable Error 
Value in the hth Stratum 
(Stratified Mean-per-unit 

estimator) 
mstY ,

ˆ  ( )∑ =
−−

L

h hhh yxNX
1

 

Standard Deviation of the 
Audit Values 

(in the hth stratum) 
( )hyxs −  ( ) ( )[ ]

1
1

2

−

−−−∑ =

h

n

i hhhihi

n
yxyxh

 

Standard Error of the hth 
Stratum mYh

s ,ˆ  ( )

h

hyxh

n

fsN
h

−− 1
 

Overall Standard Error  mYst
s ,ˆ  ∑ =

L

h mYh
s

1
2

,ˆ  

 hg  ( )
h

hhh

n
nNN −

 

Effective Degrees of Freedom 
(Stratified Sampling) en  ( )( )∑ =

−
L

h hmY

mY

ns

s

hh

st

1
4

,ˆ

4
,ˆ

1/
 or 

( )
∑

∑

=

−

= −

−
L

h
h

yxh

L

h yxh

n
sg

sg

h

h

1

4
)(

2

2

1
2

)(

1

 

(Cochran 5.16)

Precision Amount 
(Stratified Mean-per-unit 

estimator) 
 

mYn ste
st ,ˆ∗  

Instead of the student’s-t, some sources will advocate use of the 
standard normal table, or z-value.  The student’s-t table can be used 

by computing the effective degrees of freedom as described by 
Cochran at page 96.  In nearly all cases in audit sampling these two 

methods will not differ materially in the results. 

Confidence Interval 
(Estimated Total Taxable Error 

Value) 
 ( )mYnmst ste

stY ,ˆ,
ˆ ∗±  
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Stratified Difference Estimator: 
Difference Estimator d Subscript d

Estimated Total Taxable Error 
Value in the hth Stratum 

(Stratified Difference Estimator) 
dhY ,

ˆ  hh yN    or  ( ) h
n

h ihh nyN h∑ =1 ,  

Estimated Total Taxable Error 
Value 

(Stratified Difference Estimator) 
dstY ,

ˆ  ∑ =

L

h dhY
1 ,

ˆ  

Standard Deviation of the 
Taxable Error Values 

(in the hth Stratum)  
hys  

1
)(

1
2

,

−

−∑ =

h

n

i ih

n
yyh

h   

Standard Error of the hth 

Stratum 
(Population Total Taxable Error 

Value) 
dYh

s ,ˆ  
h

hyh

n

fpcsN
h   

Overall Standard Error of the 
Estimated Total Taxable Error 

Value 
dYst

s ,ˆ  ∑ =

L

h dYh
s

1
2

,ˆ  

 hg  ( )
h

hhh

n
nNN −

 

Effective Degrees of Freedom 
(Stratified Sampling) en  ( )( )∑ =

−
L

h hdY

dY

ns

s

h

st

1
4

,ˆ

4
,ˆ

1/
 or 

( )
∑

∑

=

=

−
L

h
h

yh

L

h yh

n
sg

sg

h

h

1

42

2

1
2

1

 

(Cochran 5.16)

Precision Amount 
(Stratified Difference Estimator)  

dYn ste
st ,ˆ  

Instead of the student’s-t, some sources will advocate use of the 
standard normal table, or z-value.  The student’s-t table can be used 

by computing the effective degrees of freedom as described by 
Cochran at page 96.  In nearly all cases in audit sampling these two 

methods will not differ materially in the results. 
Confidence Interval 

(Stratified Difference Estimator)  ( )dYndst ste
stY ,ˆ,

ˆ ±  
(Cochran 5.15) 
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Coefficients of Variation (Stratified Sampling): 
Estimated standard deviation 
of the invoice amounts in the 

hth stratum 
hxs  

1
)(

1
2

−

−∑ =

h

n

i hhi

n
xxh

 

Coefficient of Variation 
of the Estimated Total Invoice 

Value 
(Stratified Frame) 

(same as the CV of the sanoke 
mean invoice value, ( )stxCV ) 

( )stXCV ˆ  
( )

( )∑
∑

=

=
−

L

h hh

L

h hhxh

xN

nfsN
h

1

1

2
1

 

 

 
The comments for the computation of Coefficients of Variation for simple random sampling apply to 
this section as well. 
 
Combined Ratio Estimator: 
Stratified ratio estimation of Y can be done in two ways, with separate or combined methods (see 
Cochran, pages 164-167).  Donald Roberts recommends the combined method for use in auditing.  
On page 166, Cochran states that, “the combined estimate is much less subject to risk of bias than the 
separate estimate.”  In both of these sources, advice is given when separate estimation can be 
considered. 
 

Combined Ratio Estimator Rc Subscript Rc

Stratified Estimate of the Total 
Invoice Amount stX̂  

( )∑ =

L

h hh xN
1

 
From the sample 

Stratified Estimate of the Total 
Taxable Error Amount stŶ  ( )∑ =

L

h hh yN
1

 
From the sample

Combined Ratio 
 CR            

st

st

X
Y

    (Unknown) 

Estimated Combined Ratio CR̂  
st

st

X
Y
ˆ
ˆ

 

(Cochran 6.54) 

Estimated Total Taxable Error 
Value 

(Combined Ratio Estimation) 
RcŶ  X

X
Y

st

st

ˆ
ˆ

 

(Cochran 6.48) 

Standard Deviation of the 
Taxable Error Values in the 

hth Stratum 
(Combined Ratio Estimation) 

hRcys
,

 ( ) ( )[ ]
1

ˆ
1

2

,,

−

−−−∑ =

h

n

i iihCiih

n
xxRyyh
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Standard Error of the hth 
Stratum 

(Combined Ratio Estimation) 
hRcs  

h

hyh

n

fpcsN
hRc ,  or 

h

hhhy

n

nNNs
hRc

)(2
,

−
 

Overall Standard Error of the 
Estimated Total Taxable Error 

(Combined Ratio Estimation) 
RcYs ˆ  ∑ =

L

h Rch
s

1
2  

 hg  ( )
h

hhh

n
nNN −

 

Effective Degrees of Freedom 
(Stratified Sampling) en  ( )( )∑ =

−
L

h hRc

Y

ns

s

h

Rc

1
4

4
ˆ

1/
or 

( )
∑

∑

=

=

−
L

h
h

yh

L

h yh

n

sg

sg

hRc

hRc

1

42

2

1
2

1
,

,  

(Cochran 5.16)

Precision Amount 
(Stratified Ratio Estimator)  

Rce Yn st ˆ  
Instead of the student’s-t, some sources will advocate use of the 

standard normal table, or z-value.  The student’s-t table can be used 
by computing the effective degrees of freedom as described by 

Cochran at page 96.  In nearly all cases in audit sampling these two 
methods will not differ materially in the results. 

Confidence Interval 
(Combined Ratio Estimation)  ( )

Rce YnRc stY ˆ
ˆ ±  

(Cochran 5.15) 

 
 
Combined Regression Estimator: 

Combined Regression 
Estimator Gc Subscript Gc

( )
1

1 ,,

−

−∑ =

h

hh
n

i ihih

n
yxnyxh

or 

( )( )[ ]
1

1 ,,

−

−−∑ =

h

n

i hihhih

n
yyxxh

 
Covariance of the Invoice 
Amounts and the Taxable 
Error in the hth Stratum 

hyxCov ),(  

Excel formula: “ = ( )[ ]1/ −hh nn  * covar(range 
of yi values, range containing xi values)” 

1
)(

1
2

,

−

−∑ =

h

n

i ih

n
xxh

h  or 
)1(

)( 2
,11

2
,

−

− ∑∑ ==

hh

ih

n

i

n

i ihh

nn

xxn hh

 

or  
( )

1

22
,

−

−∑
h

hih

n
xnx

 Variance of the Invoice 
Amounts in the hth Stratum 

2
hxs  

Excel formula: “=var(range containing xi 
values)” 
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1
)(

1
2

,

−

−∑ =

h

n

i ih

n
yyh

h or 
)1(

)( 2
,11

2
,

−

− ∑∑ ==

hh

ih

n

i

n

i ihh

nn

yyn hh

 

or 
( )

1

2
1

2
,

−

−∑ =

h

h
n

i ih

n
ynyh

 
Variance of the Taxable Error 

Amounts in the hth Stratum 
2

hys  

Excel formula: “=var(range containing yi 
values)” 

Combined Regression 
Coefficient Gcb  

( )

( )∑

∑

=

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎥
⎦

⎤
⎢
⎣

⎡
−

L

h
h

x
hhh

L

h
h

h
hhh

n
s

nNN

n
yxCov

nNN

h

1

2

1

),(

 

Estimated Total Taxable Error 
Value 

(Combined Reg. Estimation) 
GcŶ  ( ) ( )( )( )∑∑ ==

−+
L

h hhGc
L

h hh xNXbyN
11

 

Standard Deviation of the 
Taxable Error Values in the 

hth Stratum 
(Combined Reg. Estimation) 

hGcys
,

 ( ) ( )( )222 ),(2
hh xGchGcy sbyxCovbs +−  

Standard Error of the hth 
Stratum 

(Combined Reg. Estimation) 
hGcs  

h

hyh

n

fpcsN
hGc ,  or 

h

hhhy

n

nNNs
hGc

)(2
,

−
 

Overall Standard Error of the 
Estimated Total Taxable Error 

(Combined Reg. Estimation) 
GcYs ˆ  ∑ =

L

h Gch
s

1
2  

 hg  ( )
h

hhh

n
nNN −

 

Effective Degrees of Freedom 
(Stratified Sampling) en  ( )( )∑ =

−
L

h hGc

Y

ns

s

h

Gc

1
4

4
ˆ

1/
 or 

( )
∑

∑

=

=

−
L

h
h

yh

L

h yh

n

sg

sg

hGc

hGc

1

42

2

1
2

1
,

,  

(Cochran 5.16)

Precision Amount 
(Combined Reg. Estimation)  

Gce Yn st ˆ  
Instead of the student’s-t, some sources will advocate use of the 

standard normal table, or z-value.  The student’s-t table can be used 
by computing the effective degrees of freedom as described by 

Cochran at page 96.  In nearly all cases in audit sampling these two 
methods will not differ materially in the results. 

Confidence Interval 
(Combined Reg. Estimation)  ( )

Gce YnGc stY ˆ
ˆ ±  
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The following sections deal with the issue of sample size.  To provide a “statistical approach” to 
estimating a sample size before the actual sampling begins, the auditor has to have a very good idea 
of the variance: .  Unfortunately, most auditors will have very little understanding what is meant 
by the “variance of taxable error amounts”, much less how it is computed.  Fortunately, there are 
some methods available that allow this to be estimated, or at least guessed at intelligently.   

2
ys

 
The first section (General Precision) deals with the outcome where precision is not sufficient to 
provide meaningful results.  In that situation, using a very rough procedure, consideration may given 
to either expanding the existing sample or taking another larger sample.  The next section (Probe 
Sample) deals with the event that the auditor wants to take a separate, much smaller sample for the 
dedicated purpose of finding a value of  to plug into the formulas.   In practice, this procedure is 
not popular, as it requires the auditor to perform audits of two different samples.  The initial probe 
sample’s purpose often is little-understood, and is frequently viewed as being without purpose to 
those less familiar with statistical sampling.   

2
ys

 
Another section deals specifically with the expansion of a stratified sample using “less rough” 
methods.   The final two methods, labeled Error Rate Models I and II allow for the auditor to estimate 

, possibly without having to do a probe sample.  These three procedures are, in practice, probably 
the most useful methods to establishing sample size using “statistical approaches”. 

2
ys

 
Finally, it must be acknowledged, sample sizes often amount to simply guesses, either to some 
elements used to determine final sample size, or as to the final sample size itself.  In some cases, no 
attempt whatsoever is made beforehand to draw a sufficiently large sample so that the final sample 
evaluation will have a precision within tolerable limits.  Often, sampling is a result of what can 
practically be done under the circumstances.  Guesswork in the determining sample size will not 
invalidate a statistical sample.   Indeed, in Cochran’s book Sampling Techniques, he alludes to the 
fact “an element of guesswork is likely to be prominent [in establishing sample size]…” (page 75). 
 
General Precision for Sample Size: 

Relative Precision %prc  %100*
Ŷ

error sampling  

Relative Precision of the Sample Results 

Desired Relative Precision %'prc  Often, auditors have a goal in terms of relative 
precision (expressed in percentage terms) 

Sample Size n 
Sample size from a simple random sample (or 

stratified random sample ) ∑ =
=

L

h hnn
1

Adjusted Sample Size n' 

Sometimes , and the auditor 
wishes to increase sample size to achieve 

desired relative precision.  This is the adjusted 
size of the overall sample estimated to meet 

this goal.   

%'% prcprc >
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Factor for Increasing Sample 
Size  

(Rough rule) 

( )2

2

%'
%

prc
prc  

For example, the auditor took a sample of 300 
units and relative precision from the sample 

results was 30%.  The auditor wants to achieve 
at least 20% relative precision.  The factor is 

calculated to be 2.25; 22 %20%30 .  
Therefore 25.2*' nn = , or 675.   The sample is 
then increased by 375 units.2  As this is a very 

rough rule, the auditor still may not achieve 
desired relative precision. 

 
 
Sample Size using a Probe Sample (or some other estimate of 
Variance): 

Desired Relative Precision %'prc  Often, auditors have a goal in terms of relative 
precision (expressed in percentage terms) 

The normal deviate derived from the standard 
normal table, such as for the following 2-sided 

confidence levels: 
(Cochran page 27) 

50% 60% 80% 90% 95% 99% 

Confidence Coefficient 
(normal deviate) z 

.67 .84 1.28 1.64 1.96 2.58 
Probe Sample Size 

(Simple Random Sampling - 
SRS) 

Prn  Sample Size for the probe sample 

Probe Sample Size in the hth 
Stratum 

(Stratified Sampling) 
(Pr)hn  Sample size in the hth stratum of a stratified 

sample 

Population Estimate of the 
Total Taxable Error from a 

Probe Sample 
PrŶ  

                              
Pr

1
Pr

*
n

y
N

n

i i∑ = (SRS) 

∑ ∑
=

=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
L

h
h

n

i ih
h n

y
N

h

1
(Pr)

1 ,
(Pr)

(Stratified Sampling) 

Estimated Variance from a 
Probe Sample 

(Simple Random Sampling) 
2ŝ  

1
)(

Pr

1
2Pr

−

−∑ =

n
yyn

i i  

                                                 
2 Caution should be exercised here as to the statistical validity of combining the results of first sampling procedure based 
on n, and the subsequent procedure based on the additional units included in sample size `n.  These formulas are offered 
with the provision that no such concerns exist in any given sampling situation.  In the example above, to assure statistical 
validity, the auditor might have to pull a whole new sample of 675 units, rather than increasing the original sample size 
300 by an additional 375 units. 
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Estimated Variance in a 
Stratum 

(Stratified Sampling) 

2ˆhs  
1

)(

(Pr)

1
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(Pr)
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h
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i hih
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Estimated Standard Deviation 
in a Stratum 

(Stratified Sampling) 
hŝ  2ˆhs  

Error Tolerance 
(Stratified Sampling)  

(margin for error) 
d Pr

ˆ%'Yprc  
(Cochran page 105)

Computed Sample Size 
(SRS) n 

( )222
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ˆ
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First formula from Roberts’ Statistical Auditing

Computed Sample Size 
(Stratified Sampling) n 

( )
( )[ ]∑
∑

=

=

+
L

h hh

L

h hh

sNzd

sNz

1
22

2

1
2

ˆ

ˆ
 

Note that here n is the overall sample size 
where ∑ =

=
L

h hnn
1

, and n should be allocated 
optimally to the strata to arrive at each nh

Formula from Roberts’ Statistical Auditing) 

 
Optimal Allocation of the Sample (Neyman Allocation): 

Overall Sample Size 
(All Strata) n Computed as per above or some other method 

Standard Deviation in the hth 
Stratum hs  

This can be either the standard deviation in the 
invoice amounts or taxable error values, but 

preferably the latter if it is available 

Sample Size in the hth Stratum hn  ( )∑ =

L

h hh

hh

sN
sN

n
1

*  

     In this formula, we substitute the True standard deviation, S,  with 
an estimate or something from a sample, s (Cochran 5.26)
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Sample Size Estimation – No Probe Sample – Error Rate Model I: 3  
Instead of taking a probe sample to determine the variation in the taxable error amounts, an estimate 
of the variation can be used by estimating the error rate that will result in the sample, and use this to 
calculate the sample size, n.   The use of the model is somewhat restricted, as it assumes the 
following: 

1. All non-zero taxable error values are either all positive, or all negative. 
2. All non-zero taxable error values are 100% of the invoice amount. 
3. The variation in the non-zero errors only is approximately the same as the variation in the 

invoice values. 
 
The first assumption often renders this model somewhat ineffective as most taxable (tax) error 
populations are a mix of zeroes, positive errors (tax underpayments), AND negative errors (tax 
overpayments).  The last two assumptions are generally not significant.  Although partial errors are 
common in sales and use tax audits, most non-zero taxable errors will equal the invoice value and 
have similar variation as the invoice amounts.   
 
Despite the problem with the first assumption, this model is very useful in setting the sample size, as 
it is known when positive and negative errors exist, the variation in the taxable error amounts is even 
greater than what is computed by Model I.  If the auditor knows that the first assumption cannot be 
satisfied, that is the taxable error population contains both negative and positives taxable error 
amounts, the sample size can be computed with the knowledge that the sample size has to be greater 
than that calculated with the model (or the auditor could use Model II). 
 
The error rate, P, is the occurrence rate at which the nonzero taxable error amounts exist in the 
sampling frame.  This should not be confused with the percentage of the total invoice amounts that 
represents taxable error, R.  R, an unknown as Y is unknown, is computed as follows: XY  
where YXR =* .  The error rate of the sample, p, is taken as estimate of the error rate of the 
population, P.  In determining total taxable error using the ratio estimator, we take the ratio of error in 
the sample, ∑∑ ii yx and use this as an estimate of R, or R̂ .  Although P almost never equals R in 
sales and use tax audits, for simplicity sake, we use an estimate of p, or , as a rough estimate of R.  
From that further simplification, we can compute an estimate of the variation, and the estimated total 
error value,Y , to calculate n. 

p̂

ˆ
 

Error Rate Model I e1 Subscript e1

Population Occurrence Rate 
(Non-zero Taxable Errors) P 

Rate in the population at which the units have a 
non-zero taxable error value 

(unknown) 
populatio the in errors zero-non of CountNP =

                                                 
3 The basis for this is found in Statistical Auditing, by Dr. Donald M. Roberts on pages 75-76 and Appendix 4.   These 
calculations can also be found in an independent self-published paper by Dr. Richard Kulp.  Roberts’s book leaves the 
method unnamed, while Kulp’s paper dubs this method as the “Error Rate Model”.  Since a subsequent refinement to the 
model called “Error Rate Model II”, was later made jointly by both Roberts and Kulp, the original model is labeled here 
as “Error Rate Model I”. 
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popu the in errors value zero of CountNPN =−

 
(Cochran page 50) 

Sample Occurrence Rate 
(Non-zero Taxable Errors) p 

Rate in the sample at which the units have a 
non-zero taxable error value 

(Also an unknown, as the sample has not been 
taken yet if this model is used) 

 samplethe in errors zero-non of Countnp = ) 
(Cochran page 50)

Estimated Sample Occurrence 
Rate 

(Non-zero Taxable Errors) 
p̂  

An estimate of the rate of occurrence in the 
sample of those sample units with a non-zero 

taxable error value.  This estimate can be based 
on auditor judgment (an educated guess), 

experience, past samples, or possibly a probe 
sample (which can be a probability sample or 

otherwise) 

Population Estimate of the 
Total Taxable Error  

(for use in the Error-Rate Model) 
1êY  

pXˆ  
This is used for the error-rate model only, and 

should never be used to actually estimate Y 
from the sample results. 

Mean Population Invoice 
Value X  NxN

i i∑=1
 (true mean) 

Variance in the Invoice Values 
(Unstratified Population) 

2
xS  

N
XxN

i i∑ =
−

1
2)(

 

This is true population variance.  Although it is 
also valid to use an estimate of the variance of 

the invoice values in the Error Rate Model. 

Variance of the Invoice Values 
in the hth Stratum 

(Stratified Population) 

2
hxS  

h

N

i i

N
Xxh∑ =

−
1

2)(
 

This is the true variance for the hth stratum. 
Although it is permissible to substitute an 

estimate of the variance in using the Error Rate 
Model. 

Estimated Standard Deviation 
of the Error Values 
(Error Rate Model I) 

1ˆes  ( )[ ]22 ˆ1ˆ XpSp x −+  
(Statistical Auditing, page 75) 

Estimated Standard Deviation 
of the Error Values in the hth 

Stratum 
(Error Rate Model I) 

1,ˆ ehs  

( )[ ]22 ˆ1ˆ hx XpSp
h

−+  
Note that the model can easily accommodate a 
separate error rate estimate for each stratum, or 

.   But in practice, the estimates for the error 
rates are made for the entire sampling frame 

and applied to each stratum as a single 
variable. 

hp̂
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Sample Size Estimation – No Probe Sample – Error Rate Model II:   
In a joint paper, Model of Sales & Use Tax File (2006) by Donald Roberts and Richard Kulp, the 
Error Rate Model has been refined.  The paper refers to the initial model, developed independently by 
Roberts and Kulp, as Error Rate Model I.  A subsequent refined model is called Error Rate Model II.  
In Model II, the restrictive assumption that required the auditor to assume that all non-zero errors 
were either positive or negative (assumption #1) was eliminated by an addition of another variable.  
This variable required the auditor to determine the mix of positive taxable errors within only the non-
zero taxable errors that likely will be found in the sample, or π̂ .  Here the count of the positive 
taxable errors plus count of the negative taxable errors equals the count of non-zero errors.  As in 
model I, the auditor must also estimate the number of non-zero errors that will be found the sample, 
by supplying in error rate percentage, or .  The count of non-zero errors in the sample is np.   p̂
 
Effectively, if the mix of positive non-zero errors is assumed to be 0% or 100%, the results of Model 
I and Model II are identical.  However, if the mix of positive errors is at 50%, that is 5.ˆ =π  then the 
model will not provide an estimate of sample size, n.  In practice, when a population with such a mix 
is encountered, only an extremely large sample or a detail will provide useful results.  Often such 
populations are ignored, as it is assumed that the overpayments cancel out all underpayments.  Such 
an assumption is difficult when the rate of error is substantial, meaning that the auditor will have to 
do a lot of work as sampling will not gain as much efficiency. 
 

Error Rate Model II e2 Subscript e2

Population Occurrence Rate 
(Non-zero Taxable Errors) P 

Rate in the population at which the units have a non-
zero taxable error value 

(unknown) 
population the in errors nonzero of CountNP =  

 errors value zero of CountNPN =−  
(Cochran page 50)

Sample Occurrence Rate 
(Non-zero Taxable Errors) p 

Rate in the sample at which the units have a non-zero 
taxable error value 

(Also an unknown, as the sample has not been taken 
yet if this model is used) 

 samplethe in errors nonero of Countnp =  
errors value zero the of countnpn =−  

(Cochran page 50)

Rate of Positives in the Non-
zero Errors in the Population Π  

The percentage of positive non-zero errors as a total 
of the non-zero taxable errors in the population.  The 

percentage of negative non-zero errors can be 
expressed as Π−1 .  The total number of positive non-
zero errors plus negative non-zero errors equals NP: 

( ) ( )[ ] NPNPNP =Π−+Π 1  & 
1)1( =Π−+Π  &  10 ≤Π≤
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Rate of Positives in the Non-
zero Errors in the Sample π  

The percentage of positive non-zero errors as a total 
of the non-zero taxable errors in the sample.  The 

percentage of negative non-zero errors can be 
expressed as π−1 .  The total number of positive non-
zero errors plus negative non-zero errors equals np. 

( ) ( )[ ] npnpnp =−+ ππ 1  
1)1( =−+ ππ  & 10 ≤≤ π  

 (Also an unknown, as the sample has not been taken 
yet if this model is used) 

Estimate of the Rate of 
Positives in the Non-zero 

Errors in the Sample 
π̂  

Additional Variable under Model II supplied by the 
auditor.  Note if 5.ˆ =π , (non-zero errors are half 

positive and half negative) then Model II can provide 
no estimate of sample size. 

Estimated Sample Occurrence 
Rate 

(Non-zero Taxable Errors) 
p̂  

An estimate of the rate of occurrence in the sample of 
those sample units with a non-zero taxable error 

value.  This estimate can be based on auditor 
judgment (an educated guess), experience, past 

samples, or possibly a probe sample (which can be a 
probability sample or otherwise). 

Population Estimate of the 
Total Taxable Error  

(for use in the Error-Rate Model) 
2êY  

( ) ( )ππ −− 1ˆˆ pXpX  
This is used for the error-rate model only, and should 
never be used to actually estimate Y from the sample 

results. 
Mean Population Invoice 

Value X  NxN

i i∑=1
 (true mean) 

Mean Invoice Value in the hth 
Stratum hX  h

N

i ih Nxh∑=1 ,  (true mean) 

Variance in the Invoice Values 
(Unstratified Population) 

2
xS  

N
XxN

i i∑ =
−

1
2)(

 

This is the true population variance, although it also 
valid to use an estimate of the variance of the Invoice 

Values in the Error Rate Model. 

Variance of the Invoice Values 
in the hth Stratum 

(Stratified Population) 

2
hxS  h

N

i i

N
Xxh∑ =

−
1

2)(
 

This is the true variance for the hth stratum, although 
it is permissible to substitute an estimate of the 

variance in using the Error Rate Model. 
Estimated Standard Deviation 

of the Error Values 
(Error Rate Model II) 

2ˆes  ( ) ( )[ ] ( )[ ]222 ˆ1ˆˆ4ˆ1ˆˆ XpXppSp x ππ −+−+  
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Estimated Standard Deviation 
of the Error Values in the hth 

Stratum 
(Error Rate Model II) 

2,ˆ ehs  

( ) ( )[ ] ( )[ ]222 ˆ1ˆˆ4ˆ1ˆˆ hhx XpXppSp
h

ππ −+−+  
Note that the model can easily accommodate a 

separate error rate estimate for each stratum, or  
(also a separate positive percentage, or

hp̂

hπ , can be 
used).   But in practice, the estimates for the error 
rates are made for the entire sampling frame and 

applied to each stratum as a single variable. 
 
Hypergeometric Distribution: 
The hypergeometric can be useful in some applications where the auditor wants to see a minimum 
number of occurrences (successes) in the sample as is the basis for Appendix D.  Although the word 
“successes” might imply that the auditor wants to see errors where none exist, what the auditor really 
wants to see, if errors exist in any degree that is considered significant, is a reasonable chance that 
they are uncovered by a sample.  So here, we have an “attributes” method in determining sample size 
for variable sampling.  As such, there is no assurance that acceptable precision will be attained, even 
if the errors are in fact detected by the sample.  In his book Statistical Auditing, Roberts suggests this 
method at pages 74-75.  Hypergeometric tables are provided in the MTC sampling software using the 
formulas as expressed below. 
 
The following has three different ways of computing probabilities derived from the hypergeometric 
distribution, any of which could be problematic: 

1. Excel’s hypergeometric function 
2. Short-cut method 
3. Exact methods as shown in Cochran at page 56 
 

Excel’s hypergeometric function appears to be an approximation and will give you very nearly the 
same results as Cochran’s formulas.  The approximation probably results from Excel’s use of the 
floating point basis for computation.  It was noted that some scenarios provide for a probability of 
zero, when some ever so slight chance exists, as in this example: N = 40,000 units, A = 4,000 units, 
and n = 400.  There is some chance that you can get a≠0, but Excel’s hypergeometric function reports 
it as exactly zero.  When computing hypergeometric probabilities, it is sometimes not acceptable to 
report a probability of zero (impossible), when in fact some possibility exists.     
 
The short-cut method presumes that zero sample successes, or a = 0, is possible.  Sometimes a = 0 is 
impossible.  For example, given a population of three red balls and one black ball and a sample size 
of two, obtaining a sample with no red balls is impossible.  Where a = 0 is impossible, this method 
cannot be used.  Otherwise, for all other scenarios, it should give the same results as the formulas 
given by Cochran.  Since population error rates are generally low in sales/use tax populations, this 
method is almost always usable–at the same time giving exact probabilities as given by Cochran’s 
formula. 
 
Cochran’s method is exact, but it may not be easily computed for larger sample sizes.  Given sample 
sizes generally encountered in sales/use tax audits, the numbers from some of the individual terms are 
often too large to fit into the computer’s memory when using conventional programs like today’s 
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spreadsheets.   In the formulas, the term n! must be computed.  On many computers today, the term 
200! cannot be stored in a conventional Excel spreadsheet – the computation is too large.  Yet sample 
sizes of 200 or more are common.  Some indirect method, usually a computer program or script that 
alternates between multiplications and divisions, could possibly be used to get around this problem.  
But such complex solutions often introduce the possibility of computation errors, any one of which 
would render the result incorrect. 
 

Population Count N  
Sample Count n  

Classes C or C’ 
Population where all items fall into two classes, 

either C or C’ (the first of interest, the second not 
of interest) 

Population Successes A Number of units in N that are of interest, and fall 
into class C 

Population Nonsuccesses A’ Number of units in N that are not of interest, and 
fall into class C’ 

Sample Successes a Number of units in n that are of interest, and fall 
into class C 

Sample Non-successes a’ Number of units in n that are not of interest, and 
fall into class C’ 

Hypergeometric Probabilities  Excel formula: “=hypergeomdist(a,n,A,N)”  
Sometimes has problems, see above narrative 

Hypergeometric 
Probability of Finding an 

Error Free Sample, or a = 0  
(no successes in the sample) 

Pr(0) 
 
 
 
 
 
 

  
     (fraction 1)            (fraction 2)           (fraction 3)    

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−
−−
0

0
N

AN * ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−
−−
1

1
N

AN * ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−
−−
2

2
N

AN * … 

(fraction n) 
( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−
−−−
1

1
nN

nAN  

Each fraction must be derived and multiplied 
through the nth fraction, where the first fraction 

“subtracts 0”, the second subtracts 1, and the third 
subtracts 2 from both the numerator and the 

denominator on through the nth fraction, where 
the numerator and denominator are both 

subtracted by n-1.  Each fraction is successively 
increased by the subtracted amount shown within 

brackets “[]”.
(Formula from Dollar-Unit-Sampling by Leslie, Teitlebaum, and 

Anderson at page 65) 
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Hypergeometric 
Probability of finding errors in 

the sample, or where a≠0  

 
Pr(1) 

 
Pr(2) 

 
Pr(3) 

 
 

through 
 

Pr(a) 
 
 
 
 
 
 
 

Shortcut Method: 
( ) ( ) ( )[ ] ( )[ ]*11*1/0Pr1Pr −++−−= AAnN  

( )[ ] ( )1/11−+n
 

( ) ( ) ( )[ ] ( )[ ]*21*2/1Pr2Pr −++−−= AAnN  
[ ] ( )2/21−+n

 
( ) ( ) ( )[ ] ( )[ ]*31*3/2Pr3Pr −++−−= AAnN  

( )[ ] 3/31−+n
… 
 

( ) ( ) ( )[ ] ( )[ ]*1*/1PrPr aAaAnNaa −++−−−=  
( )[ ] ( )aan /1−+

This method only works if the Pr(0) is possible, 
see the above narrative.  Note that the Pr(0) has 
to be computed first and then used for the Pr(1) 

and so on through Pr(a).  The amounts in the 
parenthesis “()” need to be increased through 

each successive probability computation.
Formulas derived by Robert Schauer

Hypergeometric  
Probability of Finding Some 

Errors ( a≠ 0) or No Errors (a 
= 0) in the Sample 

Pr(a) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cochran’s formula: 

rdenominato
numerator  

 
)_'(*)_!*( termsAtermsAnnumerator =  

)__!*('! termsnNaardenominato =  
 

A_terms = condition_1 OR condition 2 
IF ( )1+−< aAA  THEN condition 1, ELSE 

condition 2 
11_ =condition  

( )[ ] ( )[ ] ( )[ ] *...*2*1*02_ −−−= AAAcondition  
( )[ ]1+− aA

 
A’_terms = condition_1 OR condition 2 

IF ( )1''' +−< aAA  THEN condition 1, ELSE 
condition 2 

11_ =condition  
( )[ ] ( )[ ] ( )[ ] *...*2'*1'*0'2_ −−−= AAAcondition  

( )[ ]1'' +− aA
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( )[ ] ( )[ ] ( )[ ] *...*2*1*0__ −−−= NNNtermsnN
 ( )[ ]1+− nN

 
Note that in the A_terms, A’_terms, and the 

N_n_terms, that each successive term is increased 
by the amount in parenthesis “()”.  Also, both the 

A_terms and A’_terms have two possible 
conditions depending on whether the formula 
( )1+−< aAA  or ( 1''' +− )< aAA  is true.  If true, 

condition_1, otherwise the formula for 
condition_2 must be followed.

(Cochran 3.16)

Cumulative Probability of 
Finding Less than a in a 

Sample 
Pr(<a) Pr(0)+Pr(1)+Pr(2)+…+Pr(a-1) 

Cumulative Probability of 
Finding at Least a in a Sample Pr(≥a) 1-[Pr(0)+Pr(1)+Pr(2)+…+Pr(a-1)] 
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Skew / Kurtosis 
Standard Deviation 

(Biased) Sy
( )
N

YyN

i i∑=
−

1

2

 

Standard Deviation 
(Unbiased) ys  

1
)(

1
2

−

−∑ =

n
yyn

i i  

Population Mean Y  
N

yN

i i∑ =1  

Sample Mean y  
n

yn

i i∑ =1  

Skew 1G  

( )[ ]
( )3

1

3

y

N

i i

SN

Yy∑=
−

 or ( )
( )[ ]1

2 1

−

−

NN
gN  

(2.70, Cochran shows as G1, but this can be shown as √b1 – see 
http://www.daheiser.info/excel/main/section5.pdf the second formula 

relates this to Excel’s function)
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21
 Skew 

(Excel computation) 1g  

Excel formula: “=skew(range of yi values)” 

Estimated Skewness of the 
Sampling Distribution Y

G1  
n

G1  

α3 is computed from the sample, rather than the population.  If the sample 

is greater than 100, the sampling error,
3α

σ , will be minimal, 

approximately n6 .  The skewness, α3, of a normal distribution will 

be 0.  

Kurtosis 2G  
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Kurtosis 
(Excel computation) 2g  

Excel formula: “=kurt(range of yi values)” 
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Estimated Kurtosis of the 
Sampling Distribution ( )YG 32 −  

n
G 32 −  

α4 is computed from the sample, rather than the population.  If the sample 

is greater than 100, the sampling error,
4ασ , will be minimal, 

approximately n24 .  To compare the relative peakedness/flatness, 

the kurtosis, α4, of a normal distribution is 3 (or zero if the measurement is 
G2 -3)

 
Skew and kurtosis are found in many forms, and confusing notation that does not necessarily provide 
the same results.  There are two different computations shown above for both skew and kurtosis.  
Skew measures the lack of symmetry of a population mean in a frequency distribution.  Kurtosis 
measures the peakedness or flatness of the distribution.  David A. Heiser has an excellent webpage 
(http://www.daheiser.info/) that describes the confusion that exists among the various measures and 
their notation.   
 
In Sampling Techniques, Cochran refers to G1 as Fisher’s measure of skew, but it appears that he is 
referring to what Heiser notes as √b1 (Pearson).  On page 43 of Sampling Techniques is an example 
that clearly follows the formula shown above for G1.  This formula will not give you the same result 
as Excel’s formula, or g1 above, which appears to apply to a sample.  In Statistical Auditing, Roberts 
gives the same formula for “skewness”, also referred to as G1 at page 236.  Again, the formula is not 
the same as given by Excel, or g1 above.   According to Heiser, Pearson computed skew assuming the 
measures for the sample and population are the same.  Fisher defined them differently.  The G1 
calculation shown in Cochran and Roberts are clearly parameters for the population.  
 
In Herbert Arkin’s book, Sampling Methods for the Auditor, at pages 240-241 are computations for 
skew and kurtosis.  He describes skew as α3 and kurtosis as α4 .  Arkin uses the same calculation for 
skew as given by Cochran and Roberts.   
 
In any event, skew or skewness of the population as applied above as G1, agrees with the formulas 
given by Cochran, Roberts, and Arkin.  Arkin’s book further describes estimates of the skew and 
kurtosis of the sampling distribution based on the skew and kurtosis calculations taken from the 
sample for G1 (Arkin: α3) and G2 (Arkin: α4).  The same can be said for the kurtosis computations.  
The skew and kurtosis measures of Excel can be converted to G1 and G2 using the formulas above 
(from Heiser’s webpage). 
 
This section could be used to estimate the skew and kurtosis of the sampling distribution from the 
sample if the reliability of a confidence interval for a simple random sample is questioned.   
 
Also, what is a statistically large sample can be estimated using a “rough rule” for a 95% 2-sided 
statement using G1.  That is for a 95% 2-sided statement, ( )[ ]2

1*25 Gn >  per Cochran at page 42.  
The requirements for lesser confidence levels should be less stringent; therefore if n meets the test for 
a lower confidence level, it can be presumed that a statistically large sample has been obtained. 
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Estimating Skew from the Invoice Amounts 
The formulas below can be used to estimate the skew of the taxable error amounts, , using the 

skew of invoice amounts,  and an estimate of the proportion of the overall number of nonzero 
errors, .  Note that this is a measurement of the invoice amounts in an unstratified frame.  These 
formulas were derived by Dr. Al Kvanli.  It is assumed that the same assumptions apply here as 
stated under Error Rate Model I. 

yG1

xG1

p̂

Mean Population Invoice 
Value X  NxN

i i∑=1
 (true mean) 

True Standard Deviation in 
the Invoice Values xS  

N
XxN

i i∑=
−

1
2)(

 

Skew of Invoice Amounts xG1  
( )[ ]

3
1

3

x

N

i i

NS
Xx∑ =

−
 

Estimated Sample Occurrence 
Rate 
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